众所周知,有限小数是十进分数的另一种表现形式,因此,任何一个有限小数都可以直接写成十分之几、百分之几、千分之几……的数。那么无限小数能否化成分数?
首先我们要明确,无限小数可按照小数部分是否循环分成两类:无限循环小数和无限不循环小数。无限不循环小数不能化分数,这在中学将会得到详尽的解释;无限循环小数是可以化成分数的。那么,无限循环小数又是如何化分数的呢?由于它的小数部分位数是无限的,显然不可能写成十分之几、百分之几、千分之几……的数。其实,循环小数化分数难就难在无限的小数位数。所以我就从这里入手,想办法“剪掉”无限循环小数的“大尾巴”。策略就是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍……使扩大后的无限循环小数与原无限循环小数的“大尾巴”完全相同,然后这两个数相减,“大尾巴”不就剪掉了吗!我们来看两个例子: ⑴ 把0.4747……和0.33……化成分数。 想1: 0.4747……×100=47.4747…… 0.4747……×100-0.4747……=47.4747……-0.4747…… (100-1)×0.4747……=47 即99×0.4747…… =47 那么 0.4747……=47/99 想2: 0.33……×10=3.33…… 0.33……×10-0.33……=3.33…-0.33…… (10-1) ×0.33……=3 即9×0.33……=3 那么0.33……=3/9=1/3 由此可见, 纯循环小数化分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个9组成的数;分子是纯循环小数中一个循环节组成的数。 ⑵把0.4777……和0.325656……化成分数。 想1:0.4777……×10=4.777……① 0.4777……×100=47.77……② 用②-①即得: 0.4777……×90=47-4 所以, 0.4777……=43/90 想2:0.325656……×100=32.5656……① 0.325656……×10000=3256.56……② 用②-①即得: 0.325656……×9900=3256.5656……-32.5656…… 0.325656……×9900=3256-32 所以, 0.325656……=3224/9900 将纯循环小数改写成分数,分子是一个循环节的数字组成的数;分母各位数字都是9,9的个数与循环节中的数字的个数相同. 将混循环小数改写成分数,分子是不循环部分与第一个循环节连成的数字组成的数,减去不循环部分数字组成的数之差;分母的头几位数字是9,末几位数字是0,9的个数跟循环节的数位相同,0的个数跟不循环部分的数位相同.附上大神代码:
#includeusing namespace std;int f(int u,int v){ while(u%v) { int w=u%v; u=v; v=w; } return v;}int main(){ int t; while(cin>>t) { while(t--) { char a[15]; cin>>a; int p=0,q=0,t=0,x=0,y,k=1,l=1,max; for(int i=2;a[i]!='\0';i++) { if(!t && a[i]!='(') {p++;x*=10;x+=a[i]-'0';} if(t && a[i]!=')') {q++;y*=10;y+=a[i]-'0';} if(a[i]=='(') {t=1;y=x;q=p;} } if(!q) { while(p--) k*=10; max=f(x,k); x/=max; k/=max; cout< <<'/'< <